

12SCF1300Nd 4Ω

CUSTOM TRANSDUCER

TECHNICAL SPECIFICATIONS

Nominal diameter	300	mm	12 in
Rated impedance			4 Ω
Minimum impedance			4,6 Ω
Power capacity ¹		1.300) W _{AES}
Program power ²		2	.600 W
Sensitivity	94 dB	1W / 1n	n @ Z _N
Frequency range		45 - 1.	600 Hz
Voice coil diameter	101	I.6 mm	4 in
BI factor		23	3.0 N/A
Moving mass		0,	139 kg
Voice coil length			30 mm
Air gap height			15 mm
X _{damage} (peak to peak)			56 mm

THIELE-SMALL PARAMETERS3

Resonant frequency, f _s	43 Hz
D.C. Voice coil resistance, R _e	3,4 Ω
Mechanical Quality Factor, Q _{ms}	8,2
Electrical Quality Factor, Q _{es}	0,24
Total Quality Factor, Qts	0,24
Equivalent Air Volume to C _{ms} , V _{as}	41,4 l
Mechanical Compliance, C _{ms}	97 μm / N
Mechanical Resistance, R _{ms}	4,6 kg / s
Efficiency, η_0	1,3 %
Effective Surface Area, S _d	0,055 m ²
Maximum Displacement, X _{max} ⁴	12 mm
Displacement Volume, V _d	648 cm ³
Voice Coil Inductance, Le	1 mH

[Hz]

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter	315 mm	12,4 in
Bolt circle diameter	297,5 mm	11,7 in
Baffle cutout diameter:		
- Front mount	282 mm	11,1 in
Depth	175 mm	6,9 in
Net weight	8,3 kg	18,3 lb
Shipping weight	9 kg	19,8 lb

Notes

- ¹ The power capaticty is determined according to AES2-1984 (r2003) standard.
- ² Program power is defined as power capacity + 3 dB.
- ³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- 4 The $\rm X_{max}$ is calculated as $\rm (L_{vc}$ $\rm H_{ag})/2$ + $\rm (H_{ag}/3,5)$, where $\rm L_{vc}$ is the voice coil length and $\rm H_{ag}$ is the air gap height.