

PRO10BK

CUSTOM TRANSDUCER

TECHNICAL SPECIFICATIONS

Nominal diameter	250	mm	10 in
Rated impedance			8 Ω
Minimum impedance			5,4 Ω
Power capacity ¹		2	250 W _{AES}
Program power ²			500 W
Sensitivity	95 dB	1W /	1m @ Z _N
Frequency range		65 -	5.600 Hz
Voice coil diameter	38,1	1 mm	1,5 in
BI factor			11,6 N/A
Moving mass			0,038 kg
Voice coil length			14 mm
Air gap height			7 mm
X _{damage} (peak to peak)			30 mm

THIELE-SMALL PARAMETERS3

Resonant frequency, f _s	64 Hz
D.C. Voice coil resistance, R _e	4 Ω
Mechanical Quality Factor, Q _{ms}	2,5
Electrical Quality Factor, Qes	0,46
Total Quality Factor, Qts	0,39
Equivalent Air Volume to C _{ms} , V _{as}	33,1 I
Mechanical Compliance, C _{ms}	$162~\mu m$ / N
Mechanical Resistance, R _{ms}	6,1 kg / s
Efficiency, η ₀	1,8 %
Effective Surface Area, S _d	$0,038 \text{ m}^2$
Maximum Displacement, X _{max} ⁴	6 mm
Displacement Volume, V _d	209 cm ³
Voice Coil Inductance, L _e	0,6 mH

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

Overall diameter 258 mm

Baffle cutout diameter:

Bolt circle diameter

Barrio oatoat alamotori		
- Front mount	230 mm	9,1 in
Depth	113 mm	4,4 in
Net weight	3,1 kg	6,8 lb
Shipping weight	3,6 kg	7,9 lb

MOUNTING INFORMATION

Notes

- ¹ The power capaticty is determined according to AES2-1984 (r2003) standard.
- ² Program power is defined as power capacity + 3 dB.
- ³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

10,2 in 9,5 in

241 mm

 4 The $\rm X_{max}$ is calculated as $\rm (L_{vc}$ - $\rm H_{ag})/2$ + $\rm (H_{ag}/3,5)$, where $\rm L_{vc}$ is the voice coil length and $\rm H_{ag}$ is the air gap height.