

KEY FEATURES

- High power handling: 1.000 W program power
- 2,5" copper wire voice coil
- Malt Cross® Cooling System
- Low power compression losses
- High sensitivity: 97 dB
- FEA optimized magnetic circuit

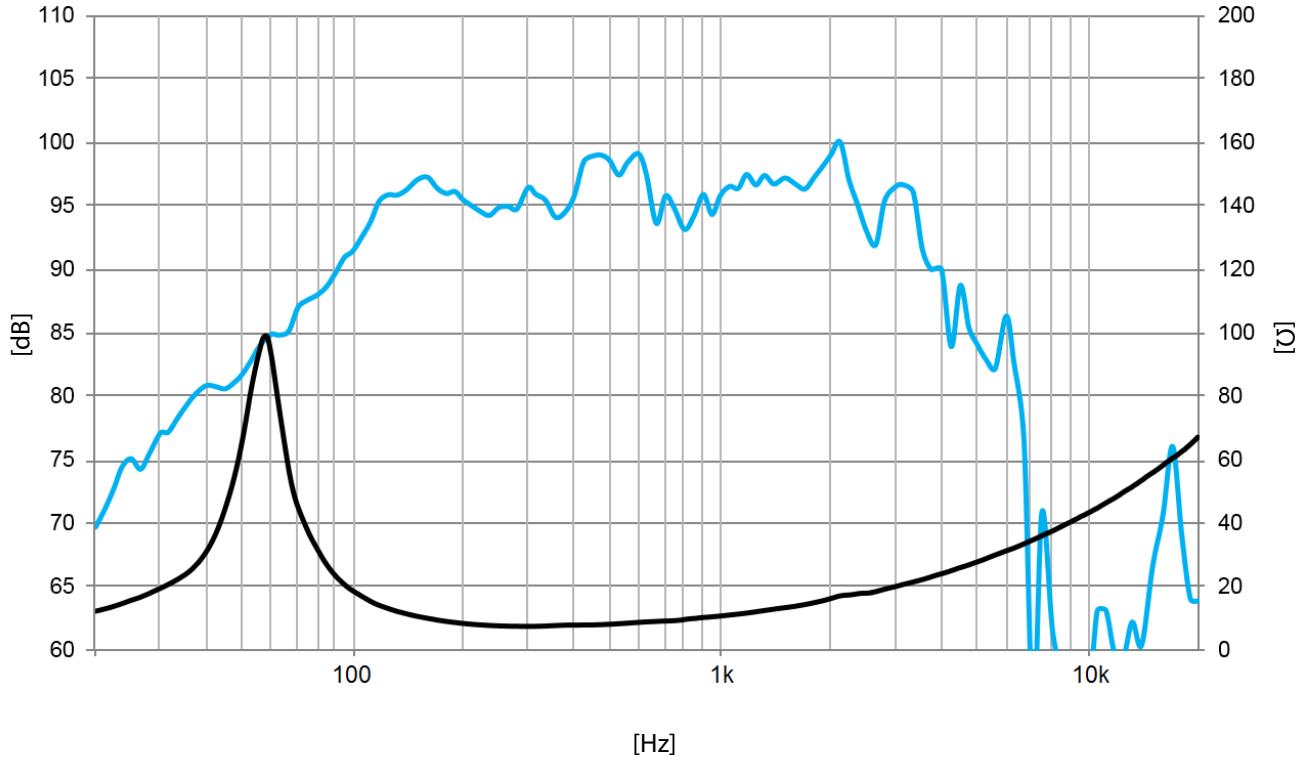
- Aluminum demodulating ring
- Weatherproof cone with treatment for both sides of the cone
- Extended controlled displacement: $X_{\max} \pm 8$ mm
- 40 mm peak-to-peak excursion before damage
- Optimized for 2 or 3 way PA systems and line arrays for ultimate professional applications

TECHNICAL SPECIFICATIONS

Nominal diameter	250 mm	10 in
Rated impedance		8 Ω
Minimum impedance		7,5 Ω
Power capacity¹		500 W _{AES}
Program power²		1.000 W
Sensitivity	97 dB	1W / 1m @ Z_N
Frequency range		60 - 3.500 Hz
Voice coil diameter	63,5 mm	2,5 in
BL factor		18,7 N/A
Moving mass		45 g
Voice coil length		19,5 mm
Air gap height		10 mm
X_{damage} (peak to peak)		40 mm

THIELE-SMALL PARAMETERS³

Resonant frequency, f_s	58 Hz
D.C. Voice coil resistance, R_e	5,5 Ω
Mechanical Quality Factor, Q_{ms}	4,7
Electrical Quality Factor, Q_{es}	0,26
Total Quality Factor, Q_{ts}	0,24
Equivalent Air Volume to C_{ms}, V_{as}	29 l
Mechanical Compliance, C_{ms}	0,168 mm / N
Mechanical Resistance, R_{ms}	3,5 kg / s
Efficiency, η_0	2,1 %
Effective Surface Area, S_d	350 cm ²
Maximum Displacement, X_{\max}^4	8 mm
Displacement Volume, V_d	280 cm ³
Voice Coil Inductance, L_e	1 mH

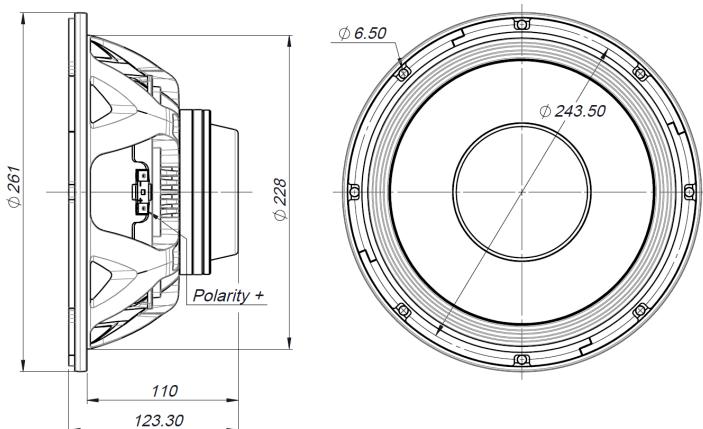

Notes:

¹ The power capacity is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

⁴ The X_{\max} is calculated as $(L_{\text{vc}} - H_{\text{ag}})/2 + (H_{\text{ag}}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.



Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter	261 mm	10,3 in
Bolt circle diameter	243,5 mm	9,6 in
Baffle cutout diameter:		
- Front mount	228 mm	9,0 in
Depth	123,3 mm	4,9 in
Net weight	3,1 kg	6,8 lb
Shipping weight	3,5 kg	7,7 lb

DIMENSION DRAWING

